/******************************************************************************
* QSkinny - Copyright (C) 2016 Uwe Rathmann
* This file may be used under the terms of the QSkinny License, Version 1.0
*****************************************************************************/
// code copied from Qwt - with permission from the author ( = myself )
#include "QskScaleEngine.h"
#include "QskFunctions.h"
#include "QskIntervalF.h"
#include "QskScaleTickmarks.h"
#include <QDebug>
#include <QtMath>
#include <cmath>
namespace
{
// What about using qskFuzzyCompare and friends ???
const double _eps = 1.0e-6;
inline int fuzzyCompare( double value1, double value2, double intervalSize )
{
const double eps = std::abs( 1.0e-6 * intervalSize );
if ( value2 - value1 > eps )
return -1;
if ( value1 - value2 > eps )
return 1;
return 0;
}
inline bool fuzzyContains( const QskIntervalF& interval, double value )
{
if ( !interval.isValid() )
return false;
if ( fuzzyCompare( value, interval.lowerBound(), interval.width() ) < 0 )
return false;
if ( fuzzyCompare( value, interval.upperBound(), interval.width() ) > 0 )
return false;
return true;
}
double ceilEps( double value, double intervalSize )
{
const double eps = _eps * intervalSize;
value = ( value - eps ) / intervalSize;
return std::ceil( value ) * intervalSize;
}
double floorEps( double value, double intervalSize )
{
const double eps = _eps * intervalSize;
value = ( value + eps ) / intervalSize;
return std::floor( value ) * intervalSize;
}
double divideEps( double intervalSize, double numSteps )
{
if ( numSteps == 0.0 || intervalSize == 0.0 )
return 0.0;
return ( intervalSize - ( _eps * intervalSize ) ) / numSteps;
}
double divideInterval( double intervalSize, int numSteps )
{
if ( numSteps <= 0 )
return 0.0;
const auto v = divideEps( intervalSize, numSteps );
if ( v == 0.0 )
return 0.0;
constexpr double base = 10.0;
// the same as std::log10( std::fabs( v ) );
const double lx = std::log( std::fabs( v ) ) / std::log( base );
const double p = std::floor( lx );
const double fraction = std::pow( base, lx - p );
uint n = base;
while ( ( n > 1 ) && ( fraction <= n / 2 ) )
n /= 2;
double stepSize = n * std::pow( base, p );
if ( v < 0 )
stepSize = -stepSize;
return stepSize;
}
}
namespace
{
double minorStepSize( double intervalSize, int maxSteps )
{
const double minStep = divideInterval( intervalSize, maxSteps );
if ( minStep != 0.0 )
{
// # ticks per interval
const int numTicks = qCeil( qAbs( intervalSize / minStep ) ) - 1;
// Do the minor steps fit into the interval?
if ( fuzzyCompare( ( numTicks + 1 ) * qAbs( minStep ),
qAbs( intervalSize ), intervalSize ) > 0 )
{
// The minor steps doesn't fit into the interval
return 0.5 * intervalSize;
}
}
return minStep;
}
}
QskScaleEngine::QskScaleEngine()
{
}
QskScaleEngine::~QskScaleEngine()
{
}
void QskScaleEngine::setAttribute( Attribute attribute, bool on )
{
if ( on )
m_attributes |= attribute;
else
m_attributes &= ~attribute;
}
bool QskScaleEngine::testAttribute( Attribute attribute ) const
{
return m_attributes & attribute;
}
void QskScaleEngine::setAttributes( Attributes attributes )
{
m_attributes = attributes;
}
QskScaleEngine::Attributes QskScaleEngine::attributes() const
{
return m_attributes;
}
QskScaleTickmarks QskScaleEngine::divideScale(
qreal x1, qreal x2, int maxMajorSteps, int maxMinorSteps, qreal stepSize) const
{
QskScaleTickmarks tickmarks;
const auto interval = QskIntervalF::normalized( x1, x2 );
if ( interval.width() > std::numeric_limits< qreal >::max() )
{
qWarning() << "QskScaleEngine::divideScale: overflow";
return tickmarks;
}
if ( interval.width() <= 0 )
return tickmarks;
stepSize = qAbs( stepSize );
if ( stepSize == 0.0 )
{
if ( maxMajorSteps < 1 )
maxMajorSteps = 1;
stepSize = divideInterval( interval.width(), maxMajorSteps );
}
if ( stepSize != 0.0 )
{
tickmarks = buildTicks( interval, stepSize, maxMinorSteps );
}
if ( x1 > x2 )
tickmarks.invert();
return tickmarks;
}
void QskScaleEngine::autoScale(int maxNumSteps, qreal& x1, qreal& x2, qreal& stepSize) const
{
auto interval = QskIntervalF::normalized( x1, x2 );
interval.setLowerBound( interval.lowerBound() );
interval.setUpperBound( interval.upperBound() );
stepSize = divideInterval( interval.width(), qMax( maxNumSteps, 1 ) );
if ( !testAttribute( QskScaleEngine::Floating ) )
interval = align( interval, stepSize );
x1 = interval.lowerBound();
x2 = interval.upperBound();
if ( testAttribute( QskScaleEngine::Inverted ) )
{
qSwap( x1, x2 );
stepSize = -stepSize;
}
}
QskIntervalF QskScaleEngine::align( const QskIntervalF& interval, qreal stepSize ) const
{
auto x1 = interval.lowerBound();
auto x2 = interval.upperBound();
// when there is no rounding beside some effect, when
// calculating with doubles, we keep the original value
const auto max = std::numeric_limits< qreal >::max();
if ( -max + stepSize <= x1 )
{
const auto x = floorEps( x1, stepSize );
if ( qFuzzyIsNull( x ) || !qFuzzyCompare( x1, x ) )
x1 = x;
}
if ( max - stepSize >= x2 )
{
const auto x = ceilEps( x2, stepSize );
if ( qFuzzyIsNull( x ) || !qFuzzyCompare( x2, x ) )
x2 = x;
}
return QskIntervalF( x1, x2 );
}
QVector< qreal > QskScaleEngine::strip(
const QVector< qreal >& ticks, const QskIntervalF& interval ) const
{
if ( !interval.isValid() || ticks.count() == 0 )
return QVector< qreal >();
if ( fuzzyContains( interval, ticks.first() )
&& fuzzyContains( interval, ticks.last() ) )
{
return ticks;
}
QVector< qreal > strippedTicks;
for ( int i = 0; i < ticks.count(); i++ )
{
if ( fuzzyContains( interval, ticks[i] ) )
strippedTicks += ticks[i];
}
return strippedTicks;
}
QskScaleTickmarks QskScaleEngine::buildTicks(
const QskIntervalF& interval, qreal stepSize, int maxMinorSteps ) const
{
using T = QskScaleTickmarks;
const auto boundingInterval = align( interval, stepSize );
QVector< qreal > ticks[3];
ticks[T::MajorTick] = buildMajorTicks( boundingInterval, stepSize );
if ( maxMinorSteps > 0 )
{
buildMinorTicks( ticks[T::MajorTick], maxMinorSteps, stepSize,
ticks[T::MinorTick], ticks[T::MediumTick] );
}
for ( auto& t : ticks )
{
t = strip( t, interval );
// ticks very close to 0.0 are
// explicitely set to 0.0
for ( int i = 0; i < t.count(); i++ )
{
if ( fuzzyCompare( t[i], 0.0, stepSize ) == 0 )
t[i] = 0.0;
}
}
QskScaleTickmarks tickmarks;
tickmarks.setMinorTicks( ticks[T::MinorTick] );
tickmarks.setMediumTicks( ticks[T::MediumTick] );
tickmarks.setMajorTicks( ticks[T::MajorTick] );
return tickmarks;
}
QVector< qreal > QskScaleEngine::buildMajorTicks(
const QskIntervalF& interval, qreal stepSize ) const
{
int numTicks = qRound( interval.width() / stepSize ) + 1;
if ( numTicks > 10000 )
numTicks = 10000;
QVector< qreal > ticks;
ticks.reserve( numTicks );
ticks += interval.lowerBound();
for ( int i = 1; i < numTicks - 1; i++ )
ticks += interval.lowerBound() + i * stepSize;
ticks += interval.upperBound();
return ticks;
}
void QskScaleEngine::buildMinorTicks(
const QVector< qreal >& majorTicks, int maxMinorSteps, qreal stepSize,
QVector< qreal >& minorTicks, QVector< qreal >& mediumTicks ) const
{
auto minStep = minorStepSize( stepSize, maxMinorSteps );
if ( minStep == 0.0 )
return;
// # ticks per interval
const int numTicks = qCeil( qAbs( stepSize / minStep ) ) - 1;
int medIndex = -1;
if ( numTicks % 2 )
medIndex = numTicks / 2;
// calculate minor ticks
for ( int i = 0; i < majorTicks.count(); i++ )
{
auto val = majorTicks[i];
for ( int k = 0; k < numTicks; k++ )
{
val += minStep;
double alignedValue = val;
if ( fuzzyCompare( val, 0.0, stepSize ) == 0 )
alignedValue = 0.0;
if ( k == medIndex )
mediumTicks += alignedValue;
else
minorTicks += alignedValue;
}
}
}
#include "moc_QskScaleEngine.cpp"
Updated on 28 July 2023 at 14:02:29 CEST